# pylint: disable=W0622,E1101
"""
A basic object-oriented interface for Galaxy entities.
"""
import abc
import json
from collections.abc import (
Iterable,
Iterator,
Mapping,
Sequence,
)
from typing import (
Any,
Callable,
cast,
ClassVar,
Generic,
IO,
Literal,
Optional,
TYPE_CHECKING,
TypeVar,
Union,
)
import bioblend
from bioblend.galaxy.workflows import InputsBy
from bioblend.util import abstractclass
if TYPE_CHECKING:
from . import client
from .galaxy_instance import GalaxyInstance
__all__ = (
"Wrapper",
"Step",
"Workflow",
"LibraryContentInfo",
"HistoryContentInfo",
"DatasetContainer",
"History",
"Library",
"Folder",
"Dataset",
"HistoryDatasetAssociation",
"DatasetCollection",
"HistoryDatasetCollectionAssociation",
"LibraryDatasetDatasetAssociation",
"LibraryDataset",
"Tool",
"Job",
"LibraryPreview",
"HistoryPreview",
"WorkflowPreview",
)
WrapperSubtype = TypeVar("WrapperSubtype", bound="Wrapper")
[docs]
@abstractclass
class Wrapper:
"""
Abstract base class for Galaxy entity wrappers.
Wrapper instances wrap deserialized JSON dictionaries such as the
ones obtained by the Galaxy web API, converting key-based access to
attribute-based access (e.g., ``library['name'] -> library.name``).
Dict keys that are converted to attributes are listed in the
``BASE_ATTRS`` class variable: this is the 'stable' interface.
Note that the wrapped dictionary is accessible via the ``wrapped``
attribute.
"""
BASE_ATTRS: tuple[str, ...] = ("id",)
gi: Optional["GalaxyInstance"]
id: str
is_modified: bool
wrapped: dict
_cached_parent: Optional["Wrapper"]
def __init__(
self, wrapped: dict[str, Any], parent: Optional["Wrapper"] = None, gi: Optional["GalaxyInstance"] = None
) -> None:
"""
:type wrapped: dict
:param wrapped: JSON-serializable dictionary
:type parent: :class:`Wrapper`
:param parent: the parent of this wrapper
:type gi: :class:`GalaxyInstance`
:param gi: the GalaxyInstance through which we can access this wrapper
"""
if not isinstance(wrapped, Mapping):
raise TypeError("wrapped object must be a mapping type")
# loads(dumps(x)) is a bit faster than deepcopy and allows type checks
try:
dumped = json.dumps(wrapped)
except (TypeError, ValueError):
raise ValueError("wrapped object must be JSON-serializable")
object.__setattr__(self, "wrapped", json.loads(dumped))
for k in self.BASE_ATTRS:
object.__setattr__(self, k, self.wrapped.get(k))
object.__setattr__(self, "_cached_parent", parent)
object.__setattr__(self, "is_modified", False)
object.__setattr__(self, "gi", gi)
@property
def parent(self) -> Optional["Wrapper"]:
"""
The parent of this wrapper.
"""
return self._cached_parent
@property
def is_mapped(self) -> bool:
"""
``True`` if this wrapper is mapped to an actual Galaxy entity.
"""
return self.id is not None
[docs]
def unmap(self) -> None:
"""
Disconnect this wrapper from Galaxy.
"""
object.__setattr__(self, "id", None)
[docs]
def clone(self: WrapperSubtype) -> WrapperSubtype:
"""
Return an independent copy of this wrapper.
"""
return self.__class__(self.wrapped)
[docs]
def touch(self) -> None:
"""
Mark this wrapper as having been modified since its creation.
"""
object.__setattr__(self, "is_modified", True)
if self.parent:
self.parent.touch()
[docs]
def to_json(self) -> str:
"""
Return a JSON dump of this wrapper.
"""
return json.dumps(self.wrapped)
[docs]
@classmethod
def from_json(cls: type[WrapperSubtype], jdef: str) -> WrapperSubtype:
"""
Build a new wrapper from a JSON dump.
"""
return cls(json.loads(jdef))
# FIXME: things like self.x[0] = 'y' do NOT call self.__setattr__
def __setattr__(self, name: str, value: str) -> None:
if name not in self.wrapped:
raise AttributeError("can't set attribute")
self.wrapped[name] = value
object.__setattr__(self, name, value)
self.touch()
def __repr__(self) -> str:
return f"{self.__class__.__name__}({self.wrapped!r})"
[docs]
class Step(Wrapper):
"""
Workflow step.
Steps are the main building blocks of a Galaxy workflow. A step can be: an
input (type ``data_collection_input``, ``data_input`` or
``parameter_input``), a computational tool (type ``tool``), a subworkflow
(type ``subworkflow``) or a pause (type ``pause``).
"""
BASE_ATTRS = Wrapper.BASE_ATTRS + (
"input_steps",
"name",
"tool_id",
"tool_inputs",
"tool_version",
"type",
)
input_steps: dict[str, dict]
type: str
tool_id: Optional[str]
tool_inputs: dict
tool_version: Optional[str]
def __init__(self, step_dict: dict[str, Any], parent: Wrapper) -> None:
super().__init__(step_dict, parent=parent, gi=parent.gi)
try:
stype = step_dict["type"]
except KeyError:
raise ValueError("not a step dict")
if stype not in {"data_collection_input", "data_input", "parameter_input", "pause", "subworkflow", "tool"}:
raise ValueError(f"Unknown step type: {stype!r}")
class InvocationStep(Wrapper):
"""
Invocation step.
"""
BASE_ATTRS = Wrapper.BASE_ATTRS + (
"action",
"job_id",
"order_index",
"state",
"update_time",
"workflow_step_id",
"workflow_step_label",
"workflow_step_uuid",
)
action: Optional[object]
gi: "GalaxyInstance"
job_id: str
order_index: int
state: str
update_time: str
workflow_step_id: str
workflow_step_label: str
workflow_step_uuid: str
@property
def parent(self) -> Wrapper:
ret = super().parent
assert ret is not None
return ret
def __init__(self, wrapped: dict[str, Any], parent: Wrapper, gi: "GalaxyInstance") -> None:
super().__init__(wrapped, parent, gi)
def refresh(self) -> "InvocationStep":
"""
Re-fetch the attributes pertaining to this object.
:return: self
"""
step_dict = self.gi.gi.invocations.show_invocation_step(self.parent.id, self.id)
self.__init__(step_dict, parent=self.parent, gi=self.gi) # type: ignore[misc]
return self
def get_outputs(self) -> dict[str, "HistoryDatasetAssociation"]:
"""
Get the output datasets of the invocation step
:rtype: dict of `HistoryDatasetAssociation`
:return: dictionary mapping output names to history datasets
"""
if not hasattr(self, "outputs"):
self.refresh()
return {name: self.gi.datasets.get(out_dict["id"]) for name, out_dict in self.wrapped["outputs"].items()}
def get_output_collections(self) -> dict[str, "HistoryDatasetCollectionAssociation"]:
"""
Get the output dataset collections of the invocation step
:rtype: dict of `HistoryDatasetCollectionAssociation`
:return: dictionary mapping output names to history dataset collections
"""
if not hasattr(self, "output_collections"):
self.refresh()
return {
name: self.gi.dataset_collections.get(out_coll_dict["id"])
for name, out_coll_dict in self.wrapped["output_collections"].items()
}
[docs]
class Workflow(Wrapper):
"""
Workflows represent ordered sequences of computations on Galaxy.
A workflow defines a sequence of steps that produce one or more
results from an input dataset.
"""
BASE_ATTRS = Wrapper.BASE_ATTRS + (
"deleted",
"inputs",
"latest_workflow_uuid",
"name",
"owner",
"published",
"steps",
"tags",
)
dag: dict[str, set[str]]
deleted: bool
input_labels_to_ids: dict[str, set[str]]
inputs: dict[str, dict]
inv_dag: dict[str, set[str]]
missing_ids: list
name: str
owner: str
POLLING_INTERVAL = 10 # for output state monitoring
published: bool
sink_ids: set[str]
source_ids: set[str]
steps: dict[str, Step]
tags: list[str]
tool_labels_to_ids: dict[str, set[str]]
def __init__(self, wf_dict: dict[str, Any], gi: Optional["GalaxyInstance"] = None) -> None:
super().__init__(wf_dict, gi=gi)
if gi:
tools_list_by_id = [t.id for t in gi.tools.get_previews()]
else:
tools_list_by_id = []
missing_ids = []
tool_labels_to_ids: dict[str, set[str]] = {}
for k, v in self.steps.items():
step_dict = cast(dict[str, Any], v)
# convert step ids to str for consistency with outer keys
step_dict["id"] = str(step_dict["id"])
for i in step_dict["input_steps"].values():
i["source_step"] = str(i["source_step"])
step = Step(step_dict, self)
self.steps[k] = step
if step.type == "tool":
if not step.tool_inputs or step.tool_id not in tools_list_by_id:
missing_ids.append(k)
assert step.tool_id
tool_labels_to_ids.setdefault(step.tool_id, set()).add(step.id)
input_labels_to_ids: dict[str, set[str]] = {}
for id_, d in self.inputs.items():
input_labels_to_ids.setdefault(d["label"], set()).add(id_)
object.__setattr__(self, "input_labels_to_ids", input_labels_to_ids)
object.__setattr__(self, "tool_labels_to_ids", tool_labels_to_ids)
dag, inv_dag = self._get_dag()
heads, tails = set(dag), set(inv_dag)
object.__setattr__(self, "dag", dag)
object.__setattr__(self, "inv_dag", inv_dag)
object.__setattr__(self, "source_ids", heads - tails)
assert (
set(self.inputs) == self.data_collection_input_ids | self.data_input_ids | self.parameter_input_ids
), f"inputs is {self.inputs!r}, while data_collection_input_ids is {self.data_collection_input_ids!r}, data_input_ids is {self.data_input_ids!r} and parameter_input_ids is {self.parameter_input_ids!r}"
object.__setattr__(self, "sink_ids", tails - heads)
object.__setattr__(self, "missing_ids", missing_ids)
def _get_dag(self) -> tuple[dict[str, set[str]], dict[str, set[str]]]:
"""
Return the workflow's DAG.
For convenience, this method computes a 'direct' (step =>
successors) and an 'inverse' (step => predecessors)
representation of the same DAG.
For instance, a workflow with a single tool *c*, two inputs
*a, b* and three outputs *d, e, f* is represented by (direct)::
{'a': {'c'}, 'b': {'c'}, 'c': {'d', 'e', 'f'}}
and by (inverse)::
{'c': {'a', 'b'}, 'd': {'c'}, 'e': {'c'}, 'f': {'c'}}
"""
dag: dict[str, set[str]] = {}
inv_dag: dict[str, set[str]] = {}
for s in self.steps.values():
assert isinstance(s, Step)
for i in s.input_steps.values():
head, tail = i["source_step"], s.id
dag.setdefault(head, set()).add(tail)
inv_dag.setdefault(tail, set()).add(head)
return dag, inv_dag
[docs]
def sorted_step_ids(self) -> list[str]:
"""
Return a topological sort of the workflow's DAG.
"""
ids: list[str] = []
source_ids = self.source_ids.copy()
inv_dag = {k: v.copy() for k, v in self.inv_dag.items()}
while source_ids:
head = source_ids.pop()
ids.append(head)
for tail in self.dag.get(head, set()):
incoming = inv_dag[tail]
incoming.remove(head)
if not incoming:
source_ids.add(tail)
return ids
@property
def data_input_ids(self) -> set[str]:
"""
Return the ids of data input steps for this workflow.
"""
return {id_ for id_, s in self.steps.items() if s.type == "data_input"}
@property
def data_collection_input_ids(self) -> set[str]:
"""
Return the ids of data collection input steps for this workflow.
"""
return {id_ for id_, s in self.steps.items() if s.type == "data_collection_input"}
@property
def parameter_input_ids(self) -> set[str]:
"""
Return the ids of parameter input steps for this workflow.
"""
return {id_ for id_, s in self.steps.items() if s.type == "parameter_input"}
@property
def tool_ids(self) -> set[str]:
"""
Return the ids of tool steps for this workflow.
"""
return {id_ for id_, s in self.steps.items() if s.type == "tool"}
@property
def input_labels(self) -> set[str]:
"""
Return the labels of this workflow's input steps.
"""
return set(self.input_labels_to_ids)
@property
def is_runnable(self) -> bool:
"""
Return True if the workflow can be run on Galaxy.
A workflow is considered runnable on a Galaxy instance if all
of the tools it uses are installed in that instance.
"""
return not self.missing_ids
@staticmethod
def _convert_input_map(input_map: dict[str, Any]) -> dict[str, Any]:
"""
Convert ``input_map`` to the format required by the Galaxy web API.
:type input_map: dict
:param input_map: a mapping to datasets or dataset collections
:rtype: dict
:return: a mapping in the format required by the Galaxy web API.
"""
ret = {}
for key, value in input_map.items():
if isinstance(
value,
(
HistoryDatasetAssociation,
HistoryDatasetCollectionAssociation,
LibraryDatasetDatasetAssociation,
LibraryDataset,
),
):
ret[key] = {"id": value.id, "src": value.SRC}
else:
ret[key] = value
return ret
# I think we should deprecate this method - NS
[docs]
def preview(self) -> "WorkflowPreview":
assert self.gi is not None
try:
return [_ for _ in self.gi.workflows.get_previews(published=True) if _.id == self.id][0]
except IndexError:
raise ValueError(f"no object for id {self.id}")
[docs]
def export(self) -> dict[str, Any]:
"""
Export a re-importable representation of the workflow.
:rtype: dict
:return: a JSON-serializable dump of the workflow
"""
assert self.gi is not None
return self.gi.gi.workflows.export_workflow_dict(self.id)
[docs]
def delete(self) -> None:
"""
Delete this workflow.
.. warning::
Deleting a workflow is irreversible - all of the data from
the workflow will be permanently deleted.
"""
assert self.gi is not None
self.gi.workflows.delete(id_=self.id)
self.unmap()
[docs]
def invoke(
self,
inputs: Optional[dict[str, Any]] = None,
params: Optional[dict[str, Any]] = None,
history: Optional[Union[str, "History"]] = None,
import_inputs_to_history: bool = False,
replacement_params: Optional[dict[str, Any]] = None,
allow_tool_state_corrections: bool = True,
inputs_by: Optional[InputsBy] = None,
parameters_normalized: bool = False,
) -> "Invocation":
"""
Invoke the workflow. This will cause a workflow to be scheduled
and return an object describing the workflow invocation.
:type inputs: dict
:param inputs: A mapping of workflow inputs to datasets and dataset collections.
The datasets source can be a LibraryDatasetDatasetAssociation (``ldda``),
LibraryDataset (``ld``), HistoryDatasetAssociation (``hda``), or
HistoryDatasetCollectionAssociation (``hdca``).
The map must be in the following format:
``{'<input_index>': dataset or collection}``
(e.g. ``{'2': HistoryDatasetAssociation()}``)
This map may also be indexed by the UUIDs of the workflow steps,
as indicated by the ``uuid`` property of steps returned from the
Galaxy API. Alternatively workflow steps may be addressed by
the label that can be set in the workflow editor. If using
uuid or label you need to also set the ``inputs_by`` parameter
to ``step_uuid`` or ``name``.
:type params: dict
:param params: A mapping of non-datasets tool parameters (see below)
:type history: History or str
:param history: The history in which to store the workflow output, or
the name of a new history to create. If ``None``, a new 'Unnamed
history' is created.
:type import_inputs_to_history: bool
:param import_inputs_to_history: If ``True``, used workflow inputs will
be imported into the history. If ``False``, only workflow outputs will
be visible in the given history.
:type allow_tool_state_corrections: bool
:param allow_tool_state_corrections: If True, allow Galaxy to fill in
missing tool state when running workflows. This may be useful for
workflows using tools that have changed over time or for workflows
built outside of Galaxy with only a subset of inputs defined.
:type replacement_params: dict
:param replacement_params: pattern-based replacements for post-job
actions (see below)
:type inputs_by: str
:param inputs_by: Determines how inputs are referenced. Can be
"step_index|step_uuid" (default), "step_index", "step_id", "step_uuid", or "name".
:type parameters_normalized: bool
:param parameters_normalized: Whether Galaxy should normalize ``params``
to ensure everything is referenced by a numeric step ID. Default is
``False``, but when setting ``params`` for a subworkflow, ``True`` is
required.
:rtype: Invocation
:return: the workflow invocation
The ``params`` dict should be specified as follows::
{STEP_ID: PARAM_DICT, ...}
where PARAM_DICT is::
{PARAM_NAME: VALUE, ...}
For backwards compatibility, the following (deprecated) format is
also supported for ``params``::
{TOOL_ID: PARAM_DICT, ...}
in which case PARAM_DICT affects all steps with the given tool id.
If both by-tool-id and by-step-id specifications are used, the
latter takes precedence.
Finally (again, for backwards compatibility), PARAM_DICT can also
be specified as::
{'param': PARAM_NAME, 'value': VALUE}
Note that this format allows only one parameter to be set per step.
For a ``repeat`` parameter, the names of the contained parameters needs
to be specified as ``<repeat name>_<repeat index>|<param name>``, with
the repeat index starting at 0. For example, if the tool XML contains::
<repeat name="cutoff" title="Parameters used to filter cells" min="1">
<param name="name" type="text" value="n_genes" label="Name of param...">
<option value="n_genes">n_genes</option>
<option value="n_counts">n_counts</option>
</param>
<param name="min" type="float" min="0" value="0" label="Min value"/>
</repeat>
then the PARAM_DICT should be something like::
{...
"cutoff_0|name": "n_genes",
"cutoff_0|min": "2",
"cutoff_1|name": "n_counts",
"cutoff_1|min": "4",
...}
At the time of this writing, it is not possible to change the number of
times the contained parameters are repeated. Therefore, the parameter
indexes can go from 0 to n-1, where n is the number of times the
repeated element was added when the workflow was saved in the Galaxy UI.
The ``replacement_params`` dict should map parameter names in
post-job actions (PJAs) to their runtime values. For
instance, if the final step has a PJA like the following::
{'RenameDatasetActionout_file1': {'action_arguments': {'newname': '${output}'},
'action_type': 'RenameDatasetAction',
'output_name': 'out_file1'}}
then the following renames the output dataset to 'foo'::
replacement_params = {'output': 'foo'}
see also `this email thread
<http://lists.bx.psu.edu/pipermail/galaxy-dev/2011-September/006875.html>`_.
.. warning::
Historically, workflow invocation consumed a ``dataset_map``
data structure that was indexed by unencoded workflow step IDs. These
IDs would not be stable across Galaxy instances. The new ``inputs``
property is instead indexed by either the ``order_index`` property
(which is stable across workflow imports) or the step UUID which is
also stable.
"""
assert self.gi is not None
if not self.is_mapped:
raise RuntimeError("workflow is not mapped to a Galaxy object")
if not self.is_runnable:
missing_tools_str = ", ".join(f"{self.steps[step_id].tool_id}[{step_id}]" for step_id in self.missing_ids)
raise RuntimeError(f"workflow has missing tools: {missing_tools_str}")
inv_dict = self.gi.gi.workflows.invoke_workflow(
workflow_id=self.id,
inputs=self._convert_input_map(inputs or {}),
params=params,
history_id=history.id if isinstance(history, History) else None,
history_name=history if isinstance(history, str) else None,
import_inputs_to_history=import_inputs_to_history,
replacement_params=replacement_params,
allow_tool_state_corrections=allow_tool_state_corrections,
inputs_by=inputs_by,
parameters_normalized=parameters_normalized,
)
return self.gi.invocations.get(inv_dict["id"])
class Invocation(Wrapper):
"""
Invocation of a workflow.
This causes the steps of a workflow to be executed in sequential order.
"""
BASE_ATTRS = Wrapper.BASE_ATTRS + (
"history_id",
"state",
"update_time",
"uuid",
"workflow_id",
)
gi: "GalaxyInstance"
history_id: str
state: str
steps: list[InvocationStep]
update_time: str
uuid: str
workflow_id: str
def __init__(self, inv_dict: dict[str, Any], gi: "GalaxyInstance") -> None:
super().__init__(inv_dict, gi=gi)
self.steps = [InvocationStep(step, parent=self, gi=gi) for step in inv_dict["steps"]]
self.inputs = [{**v, "label": k} for k, v in inv_dict["inputs"].items()]
def sorted_step_ids(self) -> list[str]:
"""
Get the step IDs sorted based on this order index.
:rtype: list of str
:return: sorted step IDs
"""
return [step.id for step in sorted(self.steps, key=lambda step: step.order_index)]
def step_states(self) -> set[str]:
"""
Get the set of step states for this invocation.
:rtype: set
:return: step states
"""
return {step.state for step in self.steps}
def number_of_steps(self) -> int:
"""
Get the number of steps for this invocation.
:rtype: int
:return: number of steps
"""
return len(self.steps)
def sorted_steps_by(
self,
indices: Optional[Iterable[int]] = None,
states: Optional[Iterable[Union[str, None]]] = None,
step_ids: Optional[Iterable[str]] = None,
) -> list[InvocationStep]:
"""
Get steps for this invocation, or get a subset by specifying
optional parameters for filtering.
:type indices: list of int
:param indices: return steps that have matching order_index
:type states: list of str
:param states: return steps that have matching states
:type step_ids: list of str
:param step_ids: return steps that have matching step_ids
:rtype: list of InvocationStep
:return: invocation steps
"""
steps: Union[list[InvocationStep], filter] = self.steps
if indices is not None:
steps = filter(lambda step: step.order_index in indices, steps)
if states is not None:
steps = filter(lambda step: step.state in states, steps)
if step_ids is not None:
steps = filter(lambda step: step.id in step_ids, steps)
return sorted(steps, key=lambda step: step.order_index)
def cancel(self) -> None:
"""
Cancel this invocation.
.. note::
On success, this method updates the Invocation object's internal variables.
"""
inv_dict = self.gi.gi.invocations.cancel_invocation(self.id)
self.__init__(inv_dict, gi=self.gi) # type: ignore[misc]
def refresh(self) -> "Invocation":
"""
Re-fetch the attributes pertaining to this object.
:return: self
"""
inv_dict = self.gi.gi.invocations.show_invocation(self.id)
self.__init__(inv_dict, gi=self.gi) # type: ignore[misc]
return self
def run_step_actions(self, steps: list[InvocationStep], actions: list[object]) -> None:
"""
Run actions for active steps of this invocation.
:type steps: list of InvocationStep
:param steps: list of steps to run actions on
:type actions: list of objects
:param actions: list of actions to run
.. note::
On success, this method updates the Invocation object's internal step variables.
"""
if not len(steps) == len(actions):
raise RuntimeError(
f"Different number of ``steps`` ({len(steps)}) and ``actions`` ({len(actions)}) in ``{self}.run_step_actions()``"
)
step_dict_list = [
self.gi.gi.invocations.run_invocation_step_action(self.id, step.id, action)
for step, action in zip(steps, actions)
]
for step, step_dict in zip(steps, step_dict_list):
step.__init__(step_dict, parent=self, gi=self.gi) # type: ignore[misc]
def summary(self) -> dict[str, Any]:
"""
Get a summary for this invocation.
:rtype: dict
:return: invocation summary
"""
return self.gi.gi.invocations.get_invocation_summary(self.id)
def step_jobs_summary(self) -> list[dict[str, Any]]:
"""
Get a summary for this invocation's step jobs.
:rtype: list of dicts
:return: step job summaries
"""
return self.gi.gi.invocations.get_invocation_step_jobs_summary(self.id)
def report(self) -> dict[str, Any]:
"""
Get a dictionary containing a Markdown report for this invocation.
:rtype: dict
:return: invocation report
"""
return self.gi.gi.invocations.get_invocation_report(self.id)
def save_report_pdf(self, file_path: str, chunk_size: int = bioblend.CHUNK_SIZE) -> None:
"""
Download a PDF report for this invocation.
:type file_path: str
:param file_path: path to save the report
:type chunk_size: int
:param chunk_size: chunk size in bytes for reading remote data
"""
self.gi.gi.invocations.get_invocation_report_pdf(self.id, file_path, chunk_size)
def biocompute_object(self) -> dict[str, Any]:
"""
Get a BioCompute object for this invocation.
:rtype: dict
:return: BioCompute object
"""
return self.gi.gi.invocations.get_invocation_biocompute_object(self.id)
def wait(self, maxwait: float = 12000, interval: float = 3, check: bool = True) -> None:
"""
Wait for this invocation to reach a terminal state.
:type maxwait: float
:param maxwait: upper limit on waiting time
:type interval: float
:param interval: polling interval in secconds
:type check: bool
:param check: if ``true``, raise an error if the terminal state is not 'scheduled'
.. note::
On success, this method updates the Invocation object's internal variables.
"""
inv_dict = self.gi.gi.invocations.wait_for_invocation(self.id, maxwait=maxwait, interval=interval, check=check)
self.__init__(inv_dict, gi=self.gi) # type: ignore[misc]
DatasetSubtype = TypeVar("DatasetSubtype", bound="Dataset")
[docs]
class Dataset(Wrapper, metaclass=abc.ABCMeta):
"""
Abstract base class for Galaxy datasets.
"""
BASE_ATTRS = Wrapper.BASE_ATTRS + (
"data_type",
"file_ext",
"file_name",
"file_size",
"genome_build",
"misc_info",
"name",
"state",
)
container: "DatasetContainer"
genome_build: str
gi: "GalaxyInstance"
misc_info: str
name: str
POLLING_INTERVAL = 1 # for state monitoring
state: str
def __init__(self, ds_dict: dict[str, Any], container: "DatasetContainer", gi: "GalaxyInstance") -> None:
super().__init__(ds_dict, gi=gi)
object.__setattr__(self, "container", container)
@property
@abc.abstractmethod
def _stream_url(self) -> str:
"""
Return the URL to stream this dataset.
"""
[docs]
def get_stream(self, chunk_size: int = bioblend.CHUNK_SIZE) -> Iterator[bytes]:
"""
Open dataset for reading and return an iterator over its contents.
:type chunk_size: int
:param chunk_size: read this amount of bytes at a time
"""
kwargs: dict[str, Any] = {"stream": True}
if isinstance(self, LibraryDataset):
kwargs["params"] = {"ld_ids%5B%5D": self.id}
r = self.gi.gi.make_get_request(self._stream_url, **kwargs)
if isinstance(self, LibraryDataset) and r.status_code == 500:
# compatibility with older Galaxy releases
kwargs["params"] = {"ldda_ids%5B%5D": self.id}
r = self.gi.gi.make_get_request(self._stream_url, **kwargs)
r.raise_for_status()
return r.iter_content(chunk_size) # FIXME: client can't close r
[docs]
def peek(self, chunk_size: int = bioblend.CHUNK_SIZE) -> bytes:
"""
Open dataset for reading and return the first chunk.
See :meth:`.get_stream` for param info.
"""
try:
return next(self.get_stream(chunk_size=chunk_size))
except StopIteration:
return b""
[docs]
def download(self, file_object: IO[bytes], chunk_size: int = bioblend.CHUNK_SIZE) -> None:
"""
Open dataset for reading and save its contents to ``file_object``.
:type file_object: file
:param file_object: output file object
See :meth:`.get_stream` for info on other params.
"""
for chunk in self.get_stream(chunk_size=chunk_size):
file_object.write(chunk)
[docs]
def get_contents(self, chunk_size: int = bioblend.CHUNK_SIZE) -> bytes:
"""
Open dataset for reading and return its **full** contents.
See :meth:`.get_stream` for param info.
"""
return b"".join(self.get_stream(chunk_size=chunk_size))
[docs]
def refresh(self: DatasetSubtype) -> DatasetSubtype:
"""
Re-fetch the attributes pertaining to this object.
:return: self
"""
gi_client = getattr(self.gi.gi, self.container.API_MODULE)
ds_dict = gi_client.show_dataset(self.container.id, self.id)
self.__init__(ds_dict, self.container, self.gi) # type: ignore[misc]
return self
[docs]
def wait(self, polling_interval: float = POLLING_INTERVAL, break_on_error: bool = True) -> None:
"""
Wait for this dataset to come out of the pending states.
:type polling_interval: float
:param polling_interval: polling interval in seconds
:type break_on_error: bool
:param break_on_error: if ``True``, raise a RuntimeError exception if
the dataset ends in the 'error' state.
.. warning::
This is a blocking operation that can take a very long time. Also,
note that this method does not return anything; however, this dataset
is refreshed (possibly multiple times) during the execution.
"""
self.gi._wait_datasets([self], polling_interval=polling_interval, break_on_error=break_on_error)
[docs]
class HistoryDatasetAssociation(Dataset):
"""
Maps to a Galaxy ``HistoryDatasetAssociation``.
"""
BASE_ATTRS = Dataset.BASE_ATTRS + ("annotation", "deleted", "purged", "tags", "visible")
SRC = "hda"
annotation: str
deleted: bool
purged: bool
@property
def _stream_url(self) -> str:
base_url = self.gi.gi.histories._make_url(module_id=self.container.id, contents=True)
return f"{base_url}/{self.id}/display"
[docs]
def get_stream(self, chunk_size: int = bioblend.CHUNK_SIZE) -> Iterator[bytes]:
"""
Open dataset for reading and return an iterator over its contents.
:type chunk_size: int
:param chunk_size: read this amount of bytes at a time
"""
_, _, r = self.gi.gi.datasets._initiate_download(
self.id,
stream_content=True,
)
return r.iter_content(chunk_size) # FIXME: client can't close r
[docs]
def update(self, **kwargs: Any) -> "HistoryDatasetAssociation":
"""
Update this history dataset metadata. Some of the attributes that can be
modified are documented below.
:type name: str
:param name: Replace history dataset name with the given string
:type genome_build: str
:param genome_build: Replace history dataset genome build (dbkey)
:type annotation: str
:param annotation: Replace history dataset annotation with given string
:type deleted: bool
:param deleted: Mark or unmark history dataset as deleted
:type visible: bool
:param visible: Mark or unmark history dataset as visible
"""
res = self.gi.gi.histories.update_dataset(self.container.id, self.id, **kwargs)
# Refresh also the history because the dataset may have been (un)deleted
self.container.refresh()
self.__init__(res, self.container, gi=self.gi) # type: ignore[misc]
return self
[docs]
def delete(self, purge: bool = False, wait: bool = False) -> None:
"""
Delete this history dataset.
:type purge: bool
:param purge: if ``True``, also purge (permanently delete) the dataset
:param wait: Whether to wait for the dataset to be purged.
.. note::
The ``purge`` option works only if the Galaxy instance has the
``allow_user_dataset_purge`` option set to ``true`` in the
``config/galaxy.yml`` configuration file.
"""
self.gi.gi.histories.delete_dataset(self.container.id, self.id, purge=purge, wait=wait)
self.container.refresh()
self.refresh()
DatasetCollectionSubtype = TypeVar("DatasetCollectionSubtype", bound="DatasetCollection")
[docs]
class DatasetCollection(Wrapper, metaclass=abc.ABCMeta):
"""
Abstract base class for Galaxy dataset collections.
"""
BASE_ATTRS = Wrapper.BASE_ATTRS + (
"collection_type",
"deleted",
"name",
"state",
)
container: Union["DatasetCollection", "History"]
API_MODULE = "dataset_collections"
collection_type: str
deleted: bool
gi: "GalaxyInstance"
def __init__(
self, dsc_dict: dict[str, Any], container: Union["DatasetCollection", "History"], gi: "GalaxyInstance"
) -> None:
super().__init__(dsc_dict, gi=gi)
object.__setattr__(self, "container", container)
[docs]
def refresh(self: DatasetCollectionSubtype) -> DatasetCollectionSubtype:
"""
Re-fetch the attributes pertaining to this object.
:return: self
"""
gi_client = getattr(self.gi.gi, self.container.API_MODULE)
dsc_dict = gi_client.show_dataset_collection(self.container.id, self.id)
self.__init__(dsc_dict, self.container, self.gi) # type: ignore[misc]
return self
[docs]
@abc.abstractmethod
def delete(self) -> None:
"""
Delete this dataset collection.
"""
[docs]
class HistoryDatasetCollectionAssociation(DatasetCollection):
"""
Maps to a Galaxy ``HistoryDatasetCollectionAssociation``.
"""
BASE_ATTRS = DatasetCollection.BASE_ATTRS + ("tags", "visible", "elements")
SRC = "hdca"
elements: list[dict]
[docs]
def delete(self) -> None:
self.gi.gi.histories.delete_dataset_collection(self.container.id, self.id)
self.container.refresh()
self.refresh()
@abstractclass
class LibRelatedDataset(Dataset):
"""
Base class for LibraryDatasetDatasetAssociation and LibraryDataset classes.
"""
@property
def _stream_url(self) -> str:
base_url = self.gi.gi.libraries._make_url()
return f"{base_url}/datasets/download/uncompressed"
[docs]
class LibraryDatasetDatasetAssociation(LibRelatedDataset):
"""
Maps to a Galaxy ``LibraryDatasetDatasetAssociation``.
"""
BASE_ATTRS = LibRelatedDataset.BASE_ATTRS + ("deleted",)
SRC = "ldda"
[docs]
class LibraryDataset(LibRelatedDataset):
"""
Maps to a Galaxy ``LibraryDataset``.
"""
SRC = "ld"
file_name: str
[docs]
def delete(self, purged: bool = False) -> None:
"""
Delete this library dataset.
:type purged: bool
:param purged: if ``True``, also purge (permanently delete) the dataset
"""
self.gi.gi.libraries.delete_library_dataset(self.container.id, self.id, purged=purged)
self.container.refresh()
self.refresh()
[docs]
def update(self, **kwargs: Any) -> "LibraryDataset":
"""
Update this library dataset metadata. Some of the attributes that can be
modified are documented below.
:type name: str
:param name: Replace history dataset name with the given string
:type genome_build: str
:param genome_build: Replace history dataset genome build (dbkey)
"""
res = self.gi.gi.libraries.update_library_dataset(self.id, **kwargs)
self.container.refresh()
self.__init__(res, self.container, gi=self.gi) # type: ignore[misc]
return self
@abstractclass
class ContentInfo(Wrapper):
"""
Instances of this class wrap dictionaries obtained by getting
``/api/{histories,libraries}/<ID>/contents`` from Galaxy.
"""
BASE_ATTRS = Wrapper.BASE_ATTRS + (
"name",
"type",
)
[docs]
class LibraryContentInfo(ContentInfo):
"""
Instances of this class wrap dictionaries obtained by getting
``/api/libraries/<ID>/contents`` from Galaxy.
"""
[docs]
class HistoryContentInfo(ContentInfo):
"""
Instances of this class wrap dictionaries obtained by getting
``/api/histories/<ID>/contents`` from Galaxy.
"""
BASE_ATTRS = ContentInfo.BASE_ATTRS + ("deleted", "state", "visible")
DatasetContainerSubtype = TypeVar("DatasetContainerSubtype", bound="DatasetContainer")
[docs]
class DatasetContainer(Wrapper, Generic[DatasetSubtype], metaclass=abc.ABCMeta):
"""
Abstract base class for dataset containers (histories and libraries).
"""
BASE_ATTRS = Wrapper.BASE_ATTRS + (
"deleted",
"name",
)
API_MODULE: str
CONTENT_INFO_TYPE: type[ContentInfo]
DS_TYPE: ClassVar[Callable]
content_infos: list[ContentInfo]
deleted: bool
gi: "GalaxyInstance"
name: str
obj_gi_client: "client.ObjDatasetContainerClient"
def __init__(
self,
c_dict: dict[str, Any],
content_infos: Optional[list[ContentInfo]] = None,
gi: Optional["GalaxyInstance"] = None,
) -> None:
"""
:type content_infos: list of :class:`ContentInfo`
:param content_infos: info objects for the container's contents
"""
assert gi is not None
super().__init__(c_dict, gi=gi)
if content_infos is None:
content_infos = []
object.__setattr__(self, "content_infos", content_infos)
object.__setattr__(self, "obj_gi_client", getattr(self.gi, self.API_MODULE))
@property
def dataset_ids(self) -> list[str]:
"""
Return the ids of the contained datasets.
"""
return [_.id for _ in self.content_infos if _.type == "file"]
# I think we should deprecate this method - NS
[docs]
def preview(self) -> "DatasetContainerPreview":
getf = self.obj_gi_client.get_previews
# self.state could be stale: check both regular and deleted containers
try:
p = [_ for _ in getf() if _.id == self.id][0]
except IndexError:
try:
p = [_ for _ in getf(deleted=True) if _.id == self.id][0]
except IndexError:
raise ValueError(f"no object for id {self.id}")
return p
[docs]
def refresh(self: DatasetContainerSubtype) -> DatasetContainerSubtype:
"""
Re-fetch the attributes pertaining to this object.
:return: self
"""
fresh = self.obj_gi_client.get(self.id)
self.__init__(fresh.wrapped, content_infos=fresh.content_infos, gi=self.gi) # type: ignore[misc]
return self
[docs]
def get_dataset(self, ds_id: str) -> DatasetSubtype:
"""
Retrieve the dataset corresponding to the given id.
:type ds_id: str
:param ds_id: dataset id
:rtype: :class:`~.HistoryDatasetAssociation` or
:class:`~.LibraryDataset`
:return: the dataset corresponding to ``ds_id``
"""
gi_client = getattr(self.gi.gi, self.API_MODULE)
ds_dict = gi_client.show_dataset(self.id, ds_id)
return self.DS_TYPE(ds_dict, self, gi=self.gi)
[docs]
def get_datasets(self, name: Optional[str] = None) -> list[DatasetSubtype]:
"""
Get all datasets contained inside this dataset container.
:type name: str
:param name: return only datasets with this name
:rtype: list of :class:`~.HistoryDatasetAssociation` or list of
:class:`~.LibraryDataset`
:return: datasets with the given name contained inside this
container
.. note::
when filtering library datasets by name, specify their full
paths starting from the library's root folder, e.g.,
``/seqdata/reads.fastq``. Full paths are available through
the ``content_infos`` attribute of
:class:`~.Library` objects.
"""
if name is None:
ds_ids = self.dataset_ids
else:
ds_ids = [_.id for _ in self.content_infos if _.name == name]
return [self.get_dataset(_) for _ in ds_ids]
[docs]
@abc.abstractmethod
def delete(self) -> None:
"""
Delete this dataset container.
"""
[docs]
class History(DatasetContainer[HistoryDatasetAssociation]):
"""
Maps to a Galaxy history.
"""
BASE_ATTRS = DatasetContainer.BASE_ATTRS + (
"annotation",
"published",
"state",
"state_ids",
"state_details",
"tags",
)
DS_TYPE = HistoryDatasetAssociation
DSC_TYPE = HistoryDatasetCollectionAssociation
CONTENT_INFO_TYPE = HistoryContentInfo
API_MODULE = "histories"
annotation: str
published: bool
tags: list[str]
[docs]
def update(self, **kwargs: Any) -> "History":
"""
Update history metadata information. Some of the attributes that can be
modified are documented below.
:type name: str
:param name: Replace history name with the given string
:type annotation: str
:param annotation: Replace history annotation with the given string
:type deleted: bool
:param deleted: Mark or unmark history as deleted
:type purged: bool
:param purged: If True, mark history as purged (permanently deleted).
:type published: bool
:param published: Mark or unmark history as published
:type importable: bool
:param importable: Mark or unmark history as importable
:type tags: list
:param tags: Replace history tags with the given list
"""
# TODO: wouldn't it be better if name and annotation were attributes?
self.gi.gi.histories.update_history(self.id, **kwargs)
self.refresh()
return self
[docs]
def delete(self, purge: bool = False) -> None:
"""
Delete this history.
:type purge: bool
:param purge: if ``True``, also purge (permanently delete) the history
.. note::
The ``purge`` option works only if the Galaxy instance has the
``allow_user_dataset_purge`` option set to ``true`` in the
``config/galaxy.yml`` configuration file.
"""
self.gi.histories.delete(id_=self.id, purge=purge)
self.refresh()
self.unmap()
[docs]
def import_dataset(self, lds: LibraryDataset) -> HistoryDatasetAssociation:
"""
Import a dataset into the history from a library.
:type lds: :class:`~.LibraryDataset`
:param lds: the library dataset to import
:rtype: :class:`~.HistoryDatasetAssociation`
:return: the imported history dataset
"""
if not self.is_mapped:
raise RuntimeError("history is not mapped to a Galaxy object")
if not isinstance(lds, LibraryDataset):
raise TypeError("lds is not a LibraryDataset")
res = self.gi.gi.histories.upload_dataset_from_library(self.id, lds.id)
if not isinstance(res, Mapping):
raise RuntimeError(f"upload_dataset_from_library: unexpected reply: {res!r}")
self.refresh()
return self.get_dataset(res["id"])
[docs]
def upload_file(self, path: str, **kwargs: Any) -> HistoryDatasetAssociation:
"""
Upload the file specified by ``path`` to this history.
:type path: str
:param path: path of the file to upload
See :meth:`~bioblend.galaxy.tools.ToolClient.upload_file` for
the optional parameters.
:rtype: :class:`~.HistoryDatasetAssociation`
:return: the uploaded dataset
"""
out_dict = self.gi.gi.tools.upload_file(path, self.id, **kwargs)
self.refresh()
return self.get_dataset(out_dict["outputs"][0]["id"])
upload_dataset = upload_file
[docs]
def upload_from_ftp(self, path: str, **kwargs: Any) -> HistoryDatasetAssociation:
"""
Upload the file specified by ``path`` from the user's FTP directory to
this history.
:type path: str
:param path: path of the file in the user's FTP directory
See :meth:`~bioblend.galaxy.tools.ToolClient.upload_file` for
the optional parameters.
:rtype: :class:`~.HistoryDatasetAssociation`
:return: the uploaded dataset
"""
out_dict = self.gi.gi.tools.upload_from_ftp(path, self.id, **kwargs)
self.refresh()
return self.get_dataset(out_dict["outputs"][0]["id"])
[docs]
def paste_content(self, content: str, **kwargs: Any) -> HistoryDatasetAssociation:
"""
Upload a string to a new dataset in this history.
:type content: str
:param content: content of the new dataset to upload
See :meth:`~bioblend.galaxy.tools.ToolClient.upload_file` for
the optional parameters (except file_name).
:rtype: :class:`~.HistoryDatasetAssociation`
:return: the uploaded dataset
"""
out_dict = self.gi.gi.tools.paste_content(content, self.id, **kwargs)
self.refresh()
return self.get_dataset(out_dict["outputs"][0]["id"])
[docs]
def export(
self,
gzip: bool = True,
include_hidden: bool = False,
include_deleted: bool = False,
wait: bool = False,
maxwait: Optional[int] = None,
) -> str:
"""
Start a job to create an export archive for this history. See
:meth:`~bioblend.galaxy.histories.HistoryClient.export_history`
for parameter and return value info.
"""
return self.gi.gi.histories.export_history(
self.id,
gzip=gzip,
include_hidden=include_hidden,
include_deleted=include_deleted,
wait=wait,
maxwait=maxwait,
)
[docs]
def download(self, jeha_id: str, outf: IO[bytes], chunk_size: int = bioblend.CHUNK_SIZE) -> None:
"""
Download an export archive for this history. Use :meth:`export`
to create an export and get the required ``jeha_id``. See
:meth:`~bioblend.galaxy.histories.HistoryClient.download_history`
for parameter and return value info.
"""
return self.gi.gi.histories.download_history(self.id, jeha_id, outf, chunk_size=chunk_size)
[docs]
def create_dataset_collection(
self,
collection_description: bioblend.galaxy.dataset_collections.CollectionDescription,
copy_elements: bool = True,
) -> "HistoryDatasetCollectionAssociation":
"""
Create a new dataset collection in the history by providing a collection description.
:type collection_description: bioblend.galaxy.dataset_collections.CollectionDescription
:param collection_description: a description of the dataset collection
:type copy_elements: bool
:param copy_elements: Whether to make a copy of the elements of the
collection being created
:rtype: :class:`~.HistoryDatasetCollectionAssociation`
:return: the new dataset collection
"""
dataset_collection = self.gi.gi.histories.create_dataset_collection(
self.id, collection_description, copy_elements=copy_elements
)
self.refresh()
return self.get_dataset_collection(dataset_collection["id"])
[docs]
def get_dataset_collection(self, dsc_id: str) -> "HistoryDatasetCollectionAssociation":
"""
Retrieve the dataset collection corresponding to the given id.
:type dsc_id: str
:param dsc_id: dataset collection id
:rtype: :class:`~.HistoryDatasetCollectionAssociation`
:return: the dataset collection corresponding to ``dsc_id``
"""
dsc_dict = self.gi.gi.histories.show_dataset_collection(self.id, dsc_id)
return self.DSC_TYPE(dsc_dict, self, gi=self.gi)
[docs]
class Library(DatasetContainer[LibraryDataset]):
"""
Maps to a Galaxy library.
"""
BASE_ATTRS = DatasetContainer.BASE_ATTRS + ("description", "synopsis")
DS_TYPE = LibraryDataset
CONTENT_INFO_TYPE = LibraryContentInfo
API_MODULE = "libraries"
description: str
synopsis: str
@property
def folder_ids(self) -> list[str]:
"""
Return the ids of the contained folders.
"""
return [_.id for _ in self.content_infos if _.type == "folder"]
[docs]
def delete(self) -> None:
"""
Delete this library.
"""
self.gi.libraries.delete(id_=self.id)
self.refresh()
self.unmap()
def _pre_upload(self, folder: Optional["Folder"]) -> Optional[str]:
"""
Return the id of the given folder, after sanity checking.
"""
if not self.is_mapped:
raise RuntimeError("library is not mapped to a Galaxy object")
return None if folder is None else folder.id
[docs]
def upload_data(self, data: str, folder: Optional["Folder"] = None, **kwargs: Any) -> LibraryDataset:
"""
Upload data to this library.
:type data: str
:param data: dataset contents
:type folder: :class:`~.Folder`
:param folder: a folder object, or ``None`` to upload to the root folder
:rtype: :class:`~.LibraryDataset`
:return: the dataset object that represents the uploaded content
Optional keyword arguments: ``file_type``, ``dbkey``.
"""
fid = self._pre_upload(folder)
res = self.gi.gi.libraries.upload_file_contents(self.id, data, folder_id=fid, **kwargs)
self.refresh()
return self.get_dataset(res[0]["id"])
[docs]
def upload_from_url(self, url: str, folder: Optional["Folder"] = None, **kwargs: Any) -> LibraryDataset:
"""
Upload data to this library from the given URL.
:type url: str
:param url: URL from which data should be read
See :meth:`.upload_data` for info on other params.
"""
fid = self._pre_upload(folder)
res = self.gi.gi.libraries.upload_file_from_url(self.id, url, folder_id=fid, **kwargs)
self.refresh()
return self.get_dataset(res[0]["id"])
[docs]
def upload_from_local(self, path: str, folder: Optional["Folder"] = None, **kwargs: Any) -> LibraryDataset:
"""
Upload data to this library from a local file.
:type path: str
:param path: local file path from which data should be read
See :meth:`.upload_data` for info on other params.
"""
fid = self._pre_upload(folder)
res = self.gi.gi.libraries.upload_file_from_local_path(self.id, path, folder_id=fid, **kwargs)
self.refresh()
return self.get_dataset(res[0]["id"])
[docs]
def upload_from_galaxy_fs(
self,
paths: Union[str, Iterable[str]],
folder: Optional["Folder"] = None,
link_data_only: Literal["copy_files", "link_to_files"] = "copy_files",
**kwargs: Any,
) -> list[LibraryDataset]:
"""
Upload data to this library from filesystem paths on the server.
:type paths: str or :class:`~collections.abc.Iterable` of str
:param paths: server-side file paths from which data should be read
:type link_data_only: str
:param link_data_only: either 'copy_files' (default) or
'link_to_files'. Setting to 'link_to_files' symlinks instead of
copying the files
:rtype: list of :class:`~.LibraryDataset`
:return: the dataset objects that represent the uploaded content
See :meth:`.upload_data` for info on other params.
.. note::
This method works only if the Galaxy instance has the
``allow_path_paste`` option set to ``true`` in the
``config/galaxy.yml`` configuration file.
"""
fid = self._pre_upload(folder)
if isinstance(paths, str):
paths = (paths,)
paths = "\n".join(paths)
res = self.gi.gi.libraries.upload_from_galaxy_filesystem(
self.id, paths, folder_id=fid, link_data_only=link_data_only, **kwargs
)
if res is None:
raise RuntimeError("upload_from_galaxy_filesystem: no reply")
if not isinstance(res, Sequence):
raise RuntimeError(f"upload_from_galaxy_filesystem: unexpected reply: {res!r}")
self.refresh()
return [self.get_dataset(ds_info["id"]) for ds_info in res]
[docs]
def copy_from_dataset(
self, hda: HistoryDatasetAssociation, folder: Optional["Folder"] = None, message: str = ""
) -> LibraryDataset:
"""
Copy a history dataset into this library.
:type hda: :class:`~.HistoryDatasetAssociation`
:param hda: history dataset to copy into the library
See :meth:`.upload_data` for info on other params.
"""
fid = self._pre_upload(folder)
res = self.gi.gi.libraries.copy_from_dataset(self.id, hda.id, folder_id=fid, message=message)
self.refresh()
return self.get_dataset(res["library_dataset_id"])
[docs]
def create_folder(
self, name: str, description: Optional[str] = None, base_folder: Optional["Folder"] = None
) -> "Folder":
"""
Create a folder in this library.
:type name: str
:param name: folder name
:type description: str
:param description: optional folder description
:type base_folder: :class:`~.Folder`
:param base_folder: parent folder, or ``None`` to create in the root
folder
:rtype: :class:`~.Folder`
:return: the folder just created
"""
bfid = None if base_folder is None else base_folder.id
res = self.gi.gi.libraries.create_folder(self.id, name, description=description, base_folder_id=bfid)
self.refresh()
return self.get_folder(res[0]["id"])
[docs]
def get_folder(self, f_id: str) -> "Folder":
"""
Retrieve the folder corresponding to the given id.
:rtype: :class:`~.Folder`
:return: the folder corresponding to ``f_id``
"""
f_dict = self.gi.gi.libraries.show_folder(self.id, f_id)
return Folder(f_dict, self, gi=self.gi)
@property
def root_folder(self) -> "Folder":
"""
The root folder of this library.
:rtype: :class:`~.Folder`
:return: the root folder of this library
"""
return self.get_folder(self.gi.gi.libraries._get_root_folder_id(self.id))
[docs]
class Folder(Wrapper):
"""
Maps to a folder in a Galaxy library.
"""
BASE_ATTRS = Wrapper.BASE_ATTRS + (
"deleted",
"description",
"item_count",
"name",
)
container: Library
description: str
gi: "GalaxyInstance"
name: str
_cached_parent: Optional["Folder"]
def __init__(self, f_dict: dict[str, Any], container: Library, gi: "GalaxyInstance") -> None:
super().__init__(f_dict, gi=gi)
object.__setattr__(self, "container", container)
@property
def parent(self) -> Optional["Folder"]:
"""
The parent folder of this folder. The parent of the root folder is
``None``.
:rtype: :class:`~.Folder`
:return: the parent of this folder
"""
if self._cached_parent is None:
object.__setattr__(self, "_cached_parent", self._get_parent())
return self._cached_parent
def _get_parent(self) -> Optional["Folder"]:
"""
Return the parent folder of this folder.
"""
parent_id = self.wrapped["parent_id"]
if parent_id is None:
return None
return self.container.get_folder(parent_id)
[docs]
def refresh(self) -> "Folder":
"""
Re-fetch the attributes pertaining to this object.
:return: self
"""
f_dict = self.gi.gi.libraries.show_folder(self.container.id, self.id)
self.__init__(f_dict, self.container, gi=self.gi) # type: ignore[misc]
return self
[docs]
class Job(Wrapper):
"""
Maps to a Galaxy job.
"""
BASE_ATTRS = Wrapper.BASE_ATTRS + ("state",)
DatasetContainerPreviewSubtype = TypeVar("DatasetContainerPreviewSubtype", bound="DatasetContainerPreview")
@abstractclass
class DatasetContainerPreview(Wrapper):
"""
Abstract base class for dataset container (history and library) 'previews'.
"""
BASE_ATTRS = Wrapper.BASE_ATTRS + (
"deleted",
"name",
)
deleted: bool
name: str
[docs]
class LibraryPreview(DatasetContainerPreview):
"""
Models Galaxy library 'previews'.
Instances of this class wrap dictionaries obtained by getting
``/api/libraries`` from Galaxy.
"""
[docs]
class HistoryPreview(DatasetContainerPreview):
"""
Models Galaxy history 'previews'.
Instances of this class wrap dictionaries obtained by getting
``/api/histories`` from Galaxy.
"""
BASE_ATTRS = DatasetContainerPreview.BASE_ATTRS + (
"annotation",
"published",
"purged",
"tags",
)
[docs]
class WorkflowPreview(Wrapper):
"""
Models Galaxy workflow 'previews'.
Instances of this class wrap dictionaries obtained by getting
``/api/workflows`` from Galaxy.
"""
BASE_ATTRS = Wrapper.BASE_ATTRS + (
"deleted",
"latest_workflow_uuid",
"name",
"number_of_steps",
"owner",
"published",
"show_in_tool_panel",
"tags",
)
deleted: bool
name: str
owner: str
published: bool
show_in_tool_panel: bool
tags: list[str]
class InvocationPreview(Wrapper):
"""
Models Galaxy invocation 'previews'.
Instances of this class wrap dictionaries obtained by getting
``/api/invocations`` from Galaxy.
"""
BASE_ATTRS = Wrapper.BASE_ATTRS + (
"history_id",
"state",
"update_time",
"uuid",
"workflow_id",
)
history_id: str
state: str
update_time: str
uuid: str
workflow_id: str
class JobPreview(Wrapper):
"""
Models Galaxy job 'previews'.
Instances of this class wrap dictionaries obtained by getting
``/api/jobs`` from Galaxy.
"""
BASE_ATTRS = Wrapper.BASE_ATTRS + ("state",)